Cryptography and Network Security - Moh Maya World
Friday, 25 August 2017

Cryptography and Network Security

CRYPTOGRAPHY AND NETWORK SECURITY
Image result for cryptography and network security
Operating System




 Cryptography


                                  Cryptography or cryptology (from Greek κρυπτός kryptós, "hidden, secret"; and γράφειν graphein, "writing", or -λογία -logia, "study", respectively) is the practice and study of techniques for secure communication in the presence of third parties called adversaries. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages; various aspects of information security such as data confidentiality, data integrity, authentication, and non-repudiation are central to modern cryptography. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, and electrical engineering. Applications of cryptography include military communications, electronic commerce, ATM cards, and computer passwords.

Cryptography prior to the modern age was effectively synonymous with encryption, the conversion of information from a readable state to apparent nonsense. The originator of an encrypted message shared the decoding technique needed to recover the original information only with intended recipients, thereby precluding unwanted persons from doing the same. The cryptography literature often uses Alice ("A") for the sender, Bob ("B") for the intended recipient, and Eve ("eavesdropper") for the adversary. Since the development of rotor cipher machines in World War I and the advent of computers in World War II, the methods used to carry out cryptology have become increasingly complex and its application more widespread.

Modern cryptography is heavily based on mathematical theory and computer science practice; cryptographic algorithms are designed around computational hardness assumptions, making such algorithms hard to break in practice by any adversary. It is theoretically possible to break such a system, but it is infeasible to do so by any known practical means. These schemes are therefore termed computationally secure; theoretical advances, e.g., improvements in integer factorization algorithms, and faster computing technology require these solutions to be continually adapted. There exist information-theoretically secure schemes that provably cannot be broken even with unlimited computing power—an example is the one-time pad—but these schemes are more difficult to implement than the best theoretically breakable but computationally secure mechanisms.
The growth of cryptographic technology has raised a number of legal issues in the information age. Cryptography's potential for use as a tool for espionage and sedition has led many governments to classify it as a weapon and to limit or even prohibit its use and export. In some jurisdictions where the use of cryptography is legal, laws permit investigators to compel the disclosure of encryption keys for documents relevant to an investigation. Cryptography also plays a major role in digital rights management and copyright infringement of digital media.


Network security


    Network security consists of the policies and practices adopted to prevent and monitor unauthorized access, misuse, modification, or denial of a computer network and network-accessible resources. Network security involves the authorization of access to data in a network, which is controlled by the network administrator. Users choose or are assigned an ID and password or other authenticating information that allows them access to information and programs within their authority. Network security covers a variety of computer networks, both public and private, that are used in everyday jobs; conducting transactions and communications among businesses, government agencies, and individuals. Networks can be private, such as within a company, and others which might be open to public access. Network security is involved in organizations, enterprises, and other types of institutions. It does as its title explains: It secures the network, as well as protecting and overseeing operations being done. The most common and simple way of protecting a network resource is by assigning it a unique name and a corresponding password.

Types of Attacks


Networks are subject to attacks from malicious sources. Attacks can be from two categories: "Passive" when a network intruder intercepts data traveling through the network, and "Active" in which an intruder initiates commands to disrupt the network's normal operation or to conduct reconnaissance and lateral movement to find and gain access to assets available via the network.

Types of attacks include:



  • Passive
  • Network
  • Wiretapping
  • Port scanner
  • Idle scan
  • Encryption
  • Traffic Analysis
  • Active:
  • Virus
  • Eavesdropping
  • Data Modification
  • Denial-of-service attack
  • DNS spoofing
  • Man in the middle
  • ARP poisoning
  • VLAN hopping
  • Smurf attack
  • Buffer overflow
  • Heap overflow
  • Format string attack
  • SQL injection
  • Phishing
  • Cross-site scripting
  • CSRF
  • Cyber-attack      



Cryptography and Network Security Reviewed by Unknown on August 25, 2017 Rating: 5 CRYPTOGRAPHY AND NETWORK SECURITY Operating System Download our APP   Cryptography                                 ...

No comments: